
Making
100 Million Parallel Tasks
User Friendly
The DALiuGE System

Andreas Wicenec
& The ICRAR team

2

DALiuGE

2

A scalable, graph oriented wor
development, scheduling and e

system.

The
DALiuGE System

3

DALiuGE: Motivation

3

216 * 300 * 4 = 78,643,200
Channels Facets Polarisations

Lower boundary
for maximum

number of tasks

4

DALiuGE

4

‘Scalabale’ for DALiuGE design means th
about whether a feature could scale and

asking again whether it really scales.

Result is a share nothing and distributed
design and implementation almost

everywhere!

5

DALiuGE: Key Concepts

5

•Traditional Dataflow
– Executability and execution of instructions is solely determined based on the

availability of input arguments to the instructions, so that the order of
instruction execution is unpredictable: i. e. behavior is nondeterministic

– Opens up new parallelism opportunities previously masked by application
flow control

– An example: Makefile

•Dataflow Graph
– nodes (stateless functions, aka operators/actors), data and tokens travelling

across directed edges to be transformed at nodes into other data items
– need control flow operators and data storage to make it practical and useful

e.g. the MIT dataflow architecture [1]

•Data-triggered Graph
– elevate data as graph Nodes
– instead of applications (instructions) polling availability of input, data objects

trigger applications based on their own internal (persistable) states
– what is really “moving along the directed edges” are “Drop events” rather

than data items.

6

The DALiuGE System
Stratospheric View

Repositories

Translation Engine Execution Engine

Development Translation &
Scheduling Execution

Graph Editor

77

Separation of Concerns

8

Concepts

8

Domain Specific Language ⇋ Palette

Workflow or Pipeline ⇋ Logical Graph

Directed Acyclic Graph ⇋ Physical Graph

Development

9

Workflow
Components Workflow Logic Parameterisation

Steps
Translation Execution

Wrap ‘your’
algorithms into

DALiuGE
components using
an API and define

palette
components,
including their

variable
parameters. Save
the new palette to

gitHub.

Using the palette
defined in the
previous step

construct the logic
of the workflow.
Save the new
logical graph
template to

gitHub.

Populate the
variable

parameters of the
components. This
will transition the

logical graph
template to a

logical graph.

Submit logical
graph to the

translator. The
translator will
generate a

physical graph
template.

Submit the
physical graph
template to the

execution engine
on a cluster. The
execution engine
will populate the
addresses of the
compute nodes

and generate the
physical graph,
which will then be

executed.

Infrequent Once per workflow
(version)

Once per workflow
use case definition

Once per workflow
use case platform

Once per workflow
use case
execution

Development

1010

Palette

Palette under
developmentTemplate Palette

Components

Component
Parameters

Development

1111

Workflow

Logical Graph
under development

Domain Palette

Component
Parameters

Development

12

Parameterisation

12

➔ Why??
➔ Logical Graph Template represents processing mode,

e.g. spectral line, continuum, fast imaging, pulsar
timing.

➔ Actual processing run requires to specify configuration
or parameters for such a mode, e.g. number of
channels, averaging algorithm, weighting.

➔ Can be done manually, but in actual operations these
parameters will be filled by processing blocks.

➔ Manual filling really just for testing.
➔ The available mutable parameters (as well as their

defaults) are defined during the creation of palette
components.

Translation &
Scheduling

13

Parameterisation

13

Translation &
Scheduling

• Why??
• Logical Graph Template represents processing mode,

e.g. spectral line, continuum, fast imaging, pulsar timing.
• Actual processing run requires to specify configuration

or parameters for such a mode, e.g. number of channels,
averaging algorithm, weighting.

• Can be done manually, but in actual operations these
parameters will be filled by processing blocks.

• Manual filling really just for testing.
• The available mutable parameters (as well as their

defaults) are defined during the creation of palette
components.

14

Graph Scheduling
• Multi-step processing pipeline can be represented as Directed Acyclic

Graph (DAG): Physical Graph.

• Hardware capabilities in a distributed compute resource can also be
represented as DAG (includes network and I/O costs).

• Requirements of actual tasks (memory, FLOPs) are constraints.

• The description of a pipeline must be independent of hardware.

– In other words: If you could, you would probably use an infinitely fast
computer with infinite amounts of memory and I/O capabilities.

• Usage of very large clusters with very many cores is a necessity, not a
choice.

• Hardware will change faster and pretty much out-of-sync with software.

• Approach: Decouple logical pipeline from physical deployment and let
computers perform the optimisation.

• This is commonly referred to as workflow or graph scheduling and subject
to very active research.

Translation &
Scheduling

15

Graph Scheduling

Separate modu

Workload
Characterisation

Framework

Translation &
Scheduling

Component

16

DALiuGE: Drop Concept

16

- Drops are ‘software objects’.
- Drops define standard interfaces and wrap a

payload.
- Drop payloads can be data, applications and other

Drops.
- There are multiple realisations of Drops.
- Drops can raise and consume Drop-Events.

- Drop payloads can be referenced by URIs.
- Drops are identified by globally unique IDs.
- Drops are instantiated, monitored and destroyed by Drop

Managers.
- Drops ‘know’ their managers, producers and consumers.
- Drops and their payload are checksummed.
- Drops follow a life-cycle.
- Drops change state and can be persisted into a sleep state.
- Data Drops are write once, read multiple times.
- Producer and Consumer Application Drops subscribe to Data Drop

Events.
- Managers subscribe to Drop-Events.

17

Graph Execution

17

• Drop Managers
– Hierarchical structure, the same RESTful APIs

• Clients provided, any third-party tool works
– Receives the physical graph as JSON object
– Simple Web UI

• Node Drop Manager (NDM)
– Manages individual Sessions
– One per node, long-lived

• Data Island Drop Manager (DIDM)
– Distributes physical graph to NDMs
– Aggregates info from NDMs
– not required for small deployments

• Master Drop Manager
– Routes physical graphs to DIDMs
– Aggregates info from DIDMs

Master
Drop

Manager

Node
Manager

Node
Manager

Island
Manager

Execution

18

DALiuGE: Advanced Stuff

18

• The Drop abstract class is used for both applications and data
⇒ Data becomes first-class citizen and driving execution.

• Transitioned from compound components like Scatter, Gather
and Loop to very generic MKN-components.

• In future we are thinking about an introspection mechanism to
populate palette components for EAGLE.

• EAGLE implements ‘type’ safety for component connections
(can’t connect, if not matching).

• DALiuGE supports streaming for all I/O data components.
• We only very recently managed to terminate and kill a running

graph!
• Trying to implement a double recursive sort algorithm as

challenge for non-graph friendly problem.

19

Status & Outlook

19

Funded by:

Rialto

20

Does it Scale?

20

• We have executed a whole series of scalability tests on
various platforms including Tianhe-2.

• Measured plain overhead imposed by DALiuGE during
execution.

µs
/D

ro
p

2.
1M

4.
2M

8.
4M

12
.6

M

0

5

10

21

Does it Scale?

21

• Yes!

• Test run: 12.6 Million tasks on 400 compute nodes
means 31,500 task/node.

• Current expectation for SDP 2,500 nodes running 78M
tasks. With actual numbers: 31450 tasks/node.

• Test execution time 420 seconds.
• SDP: several hours.

22

Problem solved?

22

• Not quite yet!
• It seems to scale, but that’s just the framework without

real algorithms.
• What’s happening when things fail?
• Not production software.
• Scheduling single workflows in a N-P hard problem,

scheduling multiple workflows under constraints is even
harder (multi N-P hard).

• Without good scheduling overall efficiency will be very
low.

23

DALiuGE: Future work

23

• Reference prototype of SDP execution framework
architecture.

• Transitioning from SDP prototype to operational system.
Mid-term for ASKAP and MWA. Longer term for SKA1-
LOW?

• Development to run a very large scale simulation and
reduction deployment (SKA1-LOW scale) on SUMMIT.

• In the process of hiring web application developer to
upgrade EAGLE.

• Visualisation of very large running physical graphs under
investigation.

• Some of the internal detailed design concepts still not
implemented.

24

DALiuGE: Future work

24

• Drop
– Drop I/O framework optimisation (RDMA, Island consolidation, etc.)
– Pipeline component interface expressing local dataflow capabilities

through dynamic GPU / FPGA schedulers
• Graph

– Graph alteration for dynamic scheduling
• e.g. Randomisation of Scatter partitions

– Full support for branch condition
– Support for user defined graph altering components
– Allow more expressive locality constraints

• e.g. this Drop must run on GPUs, those two Drops must run
together (Graph union-find)

• Deployment
– Very large scale deployment
– Multiple platforms

• Monitoring and Optimisation
– Low latency graph visualisation
– Integrate Workload Characterisation Framework

25

DALiuGE

25

Open source, under GitHub and PyPi
https://github.com/ICRAR/daliuge
https://github.com/ICRAR/EAGLE

The
Data Activated Flow Graph

Engine

https://github.com/ICRAR/daliuge
https://github.com/ICRAR/EAGLE

	Making
100 Million Parallel Tasks
User Friendly
The DALiuGE System
	DALiuGE
	DALiuGE: Motivation
	DALiuGE
	DALiuGE: Key Concepts
	The DALiuGE System�Stratospheric View
	Separation of Concerns
	Concepts
	Steps
	Palette
	Workflow
	Parameterisation
	Parameterisation
	Graph Scheduling
	Graph Scheduling
	DALiuGE: Drop Concept
	Graph Execution
	DALiuGE: Advanced Stuff
	Status & Outlook
	Does it Scale?
	Does it Scale?
	Problem solved?
	DALiuGE: Future work
	DALiuGE: Future work
	DALiuGE

