Pulsar Signal Processing Challenges for the SKA

Willem van Straten

Auckland University of Technology

Computing for SKA Colloquium

14 February 2019

Pulsars: Fundamental Physics

- Precision tests of General Relativity
- Search for nHz gravitational waves
- Relativistic plasma physics
- Equation of state of ultradense matter
- Superfluid and superconducting interior

Pulsars: Fundamental Physics

- Precision tests of General Relativity
- Search for nHz gravitational waves
- Relativistic plasma physics
- Equation of state of ultradense matter
- Superfluid and superconducting interior

Abbott et al. (2016)

Gravitational Wave Sources

Supermassive Black Hole Binary Systems Compact Objects Binary Systems

Compact Objects and Supermassive Black Holes

	Years		Hours	Se	conds	Millisecon	ds
	Loga	arithm of	Gravitation	al Wave Fre	equency i	n Hz	
-10	-8	-6	-4	-2	0	2	4
	Pulsar Timing Arrays		Sj Inte	Space-based Interferometers		Terrestrial Interferometers	

Detection Methods

Pulsar Timing Array

Distortions in spacetime alter pulsar phase

Gravitational Wave Detection is Challenging

- Pulsar intrinsic
 - Stochastic impulsive emission (white noise)
 - Spin irregularity (red noise)
- Interstellar medium
 - Variations in electron density along line of sight (red)
 - Multipath propagation (scattering)
- Within solar system
 - Errors in the solar system ephemeris (dipolar)
 - Errors in the definition of time on Earth (monopolar)

Gravitational Wave Detection is Challenging

- Pulsar intrinsic
 - Stochastic impulsive emission (white noise)
 - Spin irregularity (red noise)
- Interstellar medium
 - Variations in electron density along line of sight (red)
 - Multipath propagation (scattering)
- Within solar system
 - Errors in the solar system ephemeris (dipolar)
 - Errors in the definition of time on Earth (monopolar)

Multipath propagation

NASA, ESA and J. Hester (ASU)

Habibi et al. (2011)

Lazio et al. (2004)

FREQUENCY (MHz)

Hemberger & Stinebring (2008)

Credit: Dan Stinebring

Walker et al (2008)

Helix Nebula Detail

PRC96-13b · ST Scl OPO · April 15, 1996 · C.R. O'Dell (Rice Univ.), NASA

Radio Frequency (MHz)

Demorest (2011)

Adaptive Optics for Pulsars

Cyclic spectrum	SKA1-Low	SKA1-Mid B1
Bandwidth (MHz)	300	700
# phase bins	1024	1024
# taps interpolate	7	7
# polarizations	4	4
TMACs	9.2	21.5

De-dispersion	SKA1-Low	SKA1-Mid B1	SKA1-Mid B5
Bandwidth (MHz)	300	700	2500
Input Res. (kHz)	32	49	49
Output Res. (MHz)	0.25	1	1
Max DM	300	3000	3000
GMACs	175	379	750

Adaptive Optics for Pulsars

Cyclic spectrum	SKA1-Low	SKA1-Mid B1
Bandwidth (MHz)	300	700
# phase bins	1024	1024
# taps interpolate	7	7
# polarizations	4	4
TMACs	9.2	21.5
		5

De-dispersion	SKA1-Low	SKA1-Mid B1	SKA1-Mid B5
Bandwidth (MHz)	300	700	2500 /
Input Res. (kHz)	32	49	49 /
Output Res. (MHz)	0.25	1	1 /
Max DM	300	3000	3000
GMACs	175	379	750

Square Kilometre Array

- Cyclic spectroscopy
 - computationally prohibitive
 - SKA1-Low: divide band over 16 nodes
- Interstellar holography
 - propagation delay monitor for PTAs
 - ~ AU structure of magnetoionic ISM

Thank you!