

Perentie ITF and Verification Environment

Yuqing Chen and Keith Bengston

CSIRO Astronomy and Space Science

14th February 2019 - C4SKA @ AUT

SKA Low Consortia Diagram

CSP Low Sub-elements

- Low.CBF
- Low.PSS
- Low.PST
- Low.LMC

What's Perentie ITF?

- Integration and Test Facility
- Emulate Site Infrastructure
 - Power 3-phase 400VAC, 48VDC
 - Cooling liquid and air
 - Rack space, cabling, plumbing, etc
- On-going Development Platform
 - Hardware implementation
 - FPGA firmware
 - M&C software (MACE)
- Integration and Verification Platform
 - Sub-element: LMC, PSS and PST
 - Element: LFAA, SDP, INFRA

SKA ITF Locations

perentie ska Low Correlator & Beamformer

- Three levels of ITF for CSP
 - Sub-element Low.CBF
 - Element CSP
 - System Telescope
- Low.CBF and CSP ITF: Sydney
 - Low.CBF activities (Internal ops)
 - CSP activities (CBF, PSS, PST, LMC)

- System ITF: Geraldton
 - System activities (LFAA, CSP, SDP)

SKA Construction Phases

CSP Low Overview

Low.CBF ITF Overview

Low.CBF ITF Today

- Gemini Subrack
 - Gemini LRU (Line-replaceable unit) + Heatsink
 - Liquid cooling and power on backplane
- Rack Power and cooling, networking, server
- Sensing points (thermal, liquid)
- **Emulator servers (LFAA, PSS, PST and LMC)**

Timing Master

48VAC-DC

Transfer

Switch

Network Switch

MACE Server

Liquid Cooling Exchanger

14th February 2019 - C4SKA @ AUT

What's happening in the ITF

Signal processing and communications

- Development DSP firmware (E.g Filterbank,COR)
- Emulation of LFAA data input from a station
- Capture and checking of Low.CBF output to SDP

Monitoring and Control Environment (MACE)

- 10GbE based network for control and monitoring of each device
- Tango based emulation of LMC
- Automated testing

Infrastructure - power, cooling, cabling

- Full redundant rack power
- Liquid cooling, leak monitoring
- Fibre, power, plumbing management

Total Receiver

ITF Safety and Protection

- Operating in remote area
- Autonomous safety precautions
 - Automated shutdown sequence at emergency
 - Liquid cooling fail
 - Power failure
 - Failure/event logging

Initial MACE Setup

Monitoring And Control Environment

- MACE server and network switch installed
 - 96 ports, 10GbE switch
- MACE Networking connects:
 - o Gemini LRU
 - COTS support equipment
 - Emulator servers
- Initial M&C function
 - Gemini LRU
 - COTS equipment
 - Measure power (PF, consumption)
 - Safety, e.g thermal shutdown

Low.CBF ITF Network Diagram

- Sending emulated LFAA station data to Gemini FPGA card
 - Matlab generated packets
 - Jumbo 8k packets
 - 40 GbE optical link
 - Achieved 7Gbps (with minimal effort)
- Working on optimizing the emulator performance to increase data rates so that two full stations can be on a 40G link (22Gbps)

MACE Verification

- Verify communication between MACE server and Gemini FPGA Card Correlator & Beamform
 - Achieves ~5Gbps throughput over 10GbE
 - Able to update Jones polarisation matrices in real time

Now also considering a multicast update mechanism to reduce server load

Perentie Initial Engineering GUI

- Initial steps toward Tango controls GUI
 - End-to-end functionality
 - GUI for low-level access to FPGA registers via network
 - Access to parameters in FPGA devices

What's next?

Hardware

- Gemini HBM pre-production (x5)
- Implementing optical cross connect HW
- Complete cabling and plumbing distribution

Software

- Function to capture outputs of FPGA
- More complete LMC Tango software

Firmware

- More DSP
- Communications
- Memory buffering (HBM)

Sub-element integration (ICD)

• With LMC, PSS, PST

ITF Head Start Benefits

Risk reduction:

- Demonstrate that system design meets requirements
- De-risk internal and external interfaces earlier
- Verify construction roll-out schedule

- Develop hardware, firmware and software under site environment
- Continuous test and verification of software and firmware during development

Safety:

- Demonstrate system behaves in exceptional circumstances
- Prove fail-safe condition during environmental extremes

Questions / Discussion?

Thank-you!

Super zig-zag road but a strategic life supply line (WW2)