

TOPS: An Open Platform for the SKA?

Nicolás Erdödy

Founder, CEO – Open Parallel Ltd

Computing for SKA
Colloquium – AUT University

Auckland, New Zealand February 12, 2016

Open Parallel

Software for Multicore and Parallel Computing

MULTICORE WORLD 2016

open source technologists

Outline

• Work in progress...

Brief

- The Problem: "data deluge"
- An Opportunity: the SKA's SDP compute model as general case
- TOPS (The Open Parallel Stack) A
 Distributed Operating System for Rack Scale Computing.
- How to start: Open Source & OpenStack
- Independence Think differently
- "This time, we have time"
- Let's work together...

The Open Parallel Stack (TOPS)

- TOPS is something we need but we don't have yet
- The idea is to assemble a framework from the OS up to enable testing and debugging HPC programs on a small to medium scale before deploying them to systems like the SKA in high demand
- It's not about intensive R&D or significant development from scratch but to collect, preserve and build on Open Source work

Open Parallel Ltd.

- NZ Company involved with SKA since 2011.
- Formally pre-selected in 2012 by NZ
 Government as viable prospect for engagement in SDP and CSP.
- Since 2013 Open Parallel is formally:
 - Work Package Manager of the Software Development Environment for the CSP,
 - Contributing to SDP Compute Platform,
 - Member of the New Zealand SKA Alliance

Success takes time

Could the SKA and other HPC projects generate an ecosystem that triggers the next generation of "world champions" from our countries?

Part 2 – Where are we going?

As today's HPC becomes tomorrow's Cloud computing platform it will enable a wider application of **Machine Understanding** -the near real-time complex modelling and analysis of data that leads to insight and faster decisions.

What is the SKA?

- The world's largest radio telescope
- The ultimate big data project
- The largest supercomputer in the world
- A technological management challenge and...
- The general case of future HPC + Cloud...

SKA Context

- The SKA needs exascale computing
- There is an architecture for the system
- Processor details are not finalised
- Radio telescopes last for decades
- Processors will be replaced/upgraded
- Programming can't wait for the hardware

Major requirements

- Longevity
- Adaptability
- Acceptability
- Manageability
- Availability

Longevity

- Exascale may/will need new computing models
- The old ones aren't going away
- New languages like Chapel and X10 exist (remember Fortress?)
- But C, C++, and Fortran have a proven track record. Climate models typically use Fortran.
- UNIX is the pre-eminent multiplatform OS and has been around since 1970s

Programming

- Software must be ready when hardware is
- So it must be developed on other hardware
- Impractical to develop on SKA at any time
- Must write, test, and profile on smaller systems
- The Open Parallel Stack is needed on them too

Acceptability

- Almost all the TOP500 use Linux
- Including Cray, Blue Gene, Tianhe-2
- Compute nodes may use a small kernel
- Compute island managers use a Linux variant
- System management may use a standard Linux

<u>Adaptability</u>

- Stack must scale from lab machines to the SKA
- Stack should not be bound to one CPU type
- Nor to one storage system
- Nor to one interconnect
- System needs to be maintainable
- Efficient communication is vital
- Linux has drivers for Infiniband, Thunderbolt, ...

<u>Management</u>

- Power, communication, software.
- Power use must be monitored
- and controlled.
- Communication must be monitored
- and controlled.
- Software must be packaged, deployed, and scheduled.

Management (II)

- Ways to measure power exist
- Ways to slow machines down or turn off this or that exist
- Power management was especially important for Android (phones, tablets)
- Policies suitable for exascale machines still have to be written
- Ways to measure communication already exist
- Ways to control the use of communication devices exist
- Policies for deciding which computations should get what share of the bandwidth, that scale to exascale, need to be developed
- Packaging and deployment are where OpenStack and Catalyst come in

Communication with humans:

- Understanding the behaviour of massively parallel programs is difficult for people
- Performance visualisation tools can help
- What's your experience?

<u>Availability</u>

- If the SKA is down, data are lost forever.
- Storage devices and processors will fail.
- Software will need correction.
- New applications will be developed.
- Need to deploy software to many islands.
- Need to restart work from failed devices.

Standing on others' shoulders

- Use OpenStack
- open source scalable "cloud computing"
- can support TOPS deployment needs
- can support monitoring needs
- shared filesystems
- containers

Containers

- Can provide fault isolation
- By taking snapshots, can provide restart
- TOPS will need to choose from several
- LXC is particularly interesting

Standing on others' shoulders (2)

- OpenHPC is important
- TOPS will need to track its abstraction interfaces
- Some scientific data visualisation tools might be included in TOPS
- BTW, it seems that "open" is the fastest and most effective way to commoditisation and COTS equivalence...

Could SKA's IT be a Black Swan?

- "Black Swan" = high-impact events that are rare and unpredictable but in retrospect seem not so improbable
- One in six IT projects (...) is a black swan, with a cost overrun of 200%, on average (*)
- Developers struggle to combine different software systems
- 61% of managers report major conflicts between project and line organisations

 (*) "Why your IT Project may be riskier than you think". B. Flyvbjerg et al. HBR, Sept. 2011 Would software have longevity, adaptability, acceptability, manageability and availability as **Diego Forlán**?

15-16-17 February 2016 5th Multicore World - Wellington

- Peter Kogge (Notre Dame, IBM Fellow, DARPA Exascale report)
- Alex Szalay (Johns Hopkins, Sloan)
- Geoffrey C Fox (Indiana)
- John Gustafson (A*STAR, Gustafson's Law, Singapore)
- Happy Sithole (Director CHPC, South Africa)
- Tshiamo Motshegwa (HPC, SKA, Botswana)
- Chun-Yu Lin (NCHC, Taiwan)
- Balazs Gerofi (RIKEN K Computer, Japan)
- VMware, DELL, Oracle, NVIDIA, INTEL, Altera, Catalyst
- Cassandra, LMAX, SCION, ICRAR
- MacDiarmid-VUW, AUT, Otago, Melbourne

Multicore World 2017

- 20 23 February 2017, Wellington
- Pete Beckman, Director Exascale Technology Institute.
 Project Argo (Argonne Labs)
- Barbara Chapman, Head of Computer Science at DoE Brookhaven Institute -collaboration w/DoD
- Filippo Spiga, Head of Research of Software Engineering at University of Cambridge
- Michelle Simmons, Director Centre for Quantum Computing, UNSW, Australia
- Hermann Hartig, Lead OS TU Dresden, Germany

Thank you!

- OpenParallel.com
- MulticoreWorld.com
- Nicolas.Erdody@openparallel.com
- about.me/nicolas.erdody
- Oamaru, South Island, New Zealand