The Low-frequency Gravitational Wave Background

Willem van Straten

Auckland University of Technology

Science for SKA Colloquium

13 February 2018

Gravitational Wave Sources

Detection Methods

Pulsar Timing Arrays

- PPTA: Parkes Pulsar Timing Array
- NANOGrav: North American Nanohertz Observatory
- EPTA: European Pulsar Timing Array
- IPTA: International Pulsar Timing Array
 - consortium of consortia (2008)

Gravitational Wave Detection

- Sazhin (1978) and Detweiler (1979)
 - single pulsar-Earth baseline
 - single SMBH binary system
- Hellings & Downs (1983)
 - quadrupolar correlations between pulsars
 - stochastic background of gravitational waves

Gravitational Wave Detection

... is challenging

in the pulsar timing array regime:

Amplitude ~ 10 nanoseconds Period ~ 10 years

... why bother?

Regimes of Energy Loss

- Dynamical friction (stars and/or gas)
 - effective down to ~parsec
 - ($M \downarrow$ cloud too small and $v \downarrow$ BH too high)
- Binary hardening
 - ejecting stars via 3-body interactions
 - effective until no more stars to eject
- Gravitational wave emission
 - kicks in ~ 1 10 milliparsecs

Burke-Spolaor (2015)

Bonetti et al. (2018)

Gravitational Wave Detection is Challenging

Pulsar intrinsic

- Stochastic impulsive emission (white noise)
- Spin irregularity (red noise)

Interstellar medium

- Variations in electron density along line of sight (red)
- Multipath propagation (scattering)

Within solar system

- Errors in the solar system ephemeris (dipolar)
- Errors in the definition of time on Earth (monopolar)

Gravitational Wave Detection is Challenging

Pulsar intrinsic

- Stochastic impulsive emission (white noise)
- Spin irregularity (red noise)

Interstellar medium

- Variations in electron density along line of sight (red)
- Multipath propagation (scattering)

Within solar system

- Errors in the solar system ephemeris (dipolar)
- Errors in the definition of time on Earth (monopolar)

Habibi et al. (2011)

Hemberger & Stinebring (2008)

Challenges = Opportunities

- Jitter noise
 - better statistical models of noise
 - e.g. Feasible Generalised Least Squares
- Scattering delays
 - "adaptive optics" via interstellar holography
 - cyclic spectroscopy and phase retrieval

SKA Phase 1

- Pulsar Survey capability
 - SKA1-Mid: ~1400 MSPs
 - SKA1-Low: ~900 MSPs
- ~ 10-fold increase in MSPs
 - more angular separations
 - greater sky coverage
- High-fidelity Pulsar Timing

Performance of Oversampled Polyphase Filterbank Inversion Via Fourier Transform

I. Morrison*,†,‡, W. van Straten§, J. Bunton[⊥], A. Deller[†], A. Jameson[†]

† Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria, Australia

‡ Curtin Institute of Radio Astronomy, Curtin University, Bentley, Western Australia, Australia. E-mail:

ian.morrison@curtin.edu.au

§Institute for Radio Astronomy & Space Research, Auckland University of Technology, Auckland, New Zealand

LCSIRO Astronomy and Space Science, Marsfield, New South Wales, Australia

Received (to be inserted by publisher); Revised (to be inserted by publisher); Accepted (to be inserted by publisher);

... reports on outcome of theoretical and prototyping effort to reduce cost of SKA

Those who build discover

- Many things learned during design
- and to be learned during construction
- provide deeper insight during operation.

"We did the work ourselves and cheerfully sledgehammered all one summer." Burnell and antenna.