Intel PSG (Altera) Enabling the SKA Community

Lance Brown

Sr. Strategic & Technical Marketing Mgr.

<u>lbrown@altera.com</u>, 719-291-7280

Agenda

- ✓ Intel Programmable Solutions Group (Altera)
- PSG's COTS Strategy for PowerMX
- High Bandwidth Memory (HBM2), Lower Power
- Case Study CNN FPGA vs GPU Power Density
- Stratix 10 Current Status, HLS, OpenCL
- NRAO Efforts

Altera == Intel Programmable Solutions Group

Intel Completes Altera Acquisition December 28, 2015

STRATEGIC RATIONALE

- Accelerated FPGA innovation from combined R&D scale
- Improved FPGA power and performance via early access and greater optimization of process node advancements
- New, breakthrough Data Center and IoT products harnessing combined FPGA + CPU expertise

POST-MERGER STRUCTURE

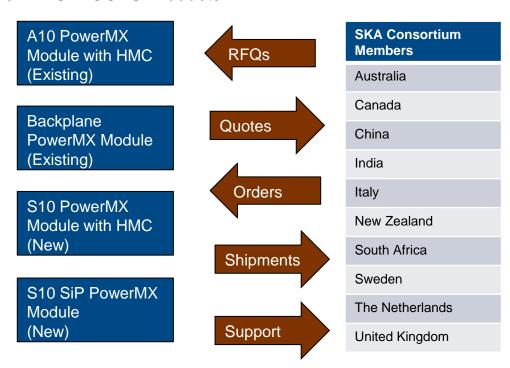
- Altera operates as a new Intel business unit called Programmable Solutions Group (PSG) with intact and dedicated sales and support
- Dan McNamara appointed
 Corporate VP and General Manager leading PSG, reports directly to Intel CEO

Intel Programmable Solutions Group (PSG) (Altera)

- Altera GM Promoted to Intel VP to run PSG
- Intel is adding resources to PSG
- On 14nm, 10nm & 7nm roadmap with larger Intel
- Enhancing High Performance Computing teams for OpenCL, OpenMP and Virtualization
- Access to Intel Labs Research Projects Huge
- Will Continue ARM based System-on-Chip Arria and Stratix Product Lines

Proposed PowerMX COTS Model NRC + CEI + Intel PSG (Altera)

Moving PowerMX to Broader Industries

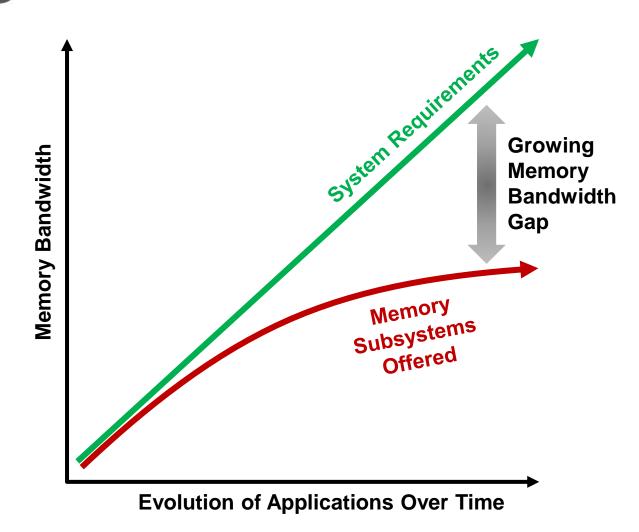


Proposed PowerMX COTS Business Model

Approaching Top COTS Providers

PowerMX CEI COTS Products

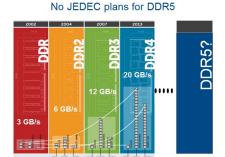
Identifying & Working with Standards Bodies for Broader Adoption

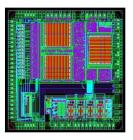


High Bandwidth Memory

10X Improvement, Lower Power

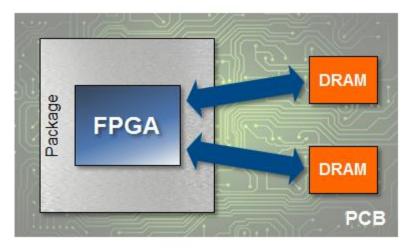
Need for Memory Bandwidth Is Critical





Key Challenges to Meeting Memory Bandwidth

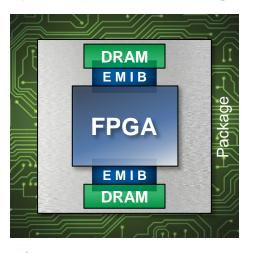
- 1. End of the DDR roadmap
- 2. Memory bandwidth is IO limited
- 3. Flat system level power budgets
- 4. Limits to monolithic memory integration



Innovation Needed to Meet High End Memory Bandwidth Requirements

"Far" Memory with Discrete DRAM

Discrete

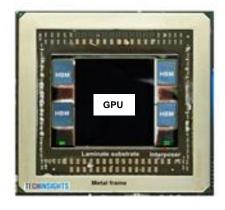

- ✗ Lower bandwidth
- ✗ Higher power
- Largest footprint

<u>Cannot</u> meet requirements of next-generation applications

"Near" Memory with DRAM SiP

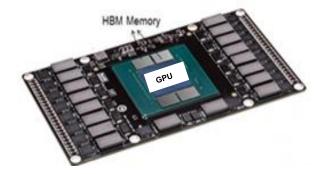
System-In Package

- Highest bandwidth
- ✓ Lowest power
- Smallest footprint


<u>Meets</u> the memory bandwidth needs of next-generation applications

Adoption of SiP Extends Beyond FPGAs

- GPU +Memory
- AMD Fiji GPU
- 4 SK Hynix HBM1



Intel Xeon

- CPU + Memory
- MCDRAM
- 16GB RAM

▼ NVIDIA Volta

- GPU +Memory
- 4 HBM1
- Planned for 2016

Stratix® 10 – Industry's Only FPGA-based DRAM SiP

10X bandwidth versus discrete DRAM

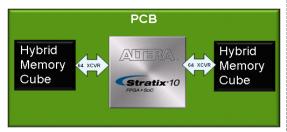
- 256 GBytes/second <u>per</u> DRAM
- Not possible with conventional solutions

Multiple system-level advantages

- Lower system power
- Smaller form factor
- Ease of use

✓ Intel EMIB technology

Solves the Memory Bandwidth Challenge


Radar Data Processor Application

Required Bandwidth: 400+ GB/s

FPGA + DDR4-2666

FPGA + Hybrid Memory **Cube 30G VSR**

Stratix 10 DRAM SiP

5 FPGAs

PGA: 42.5 mmX42.5 mm, 680 IO, 48 Transceiver)

20 DDR4 DIMMs

21 GB/s BW / DDR4 DIMM

FPGA

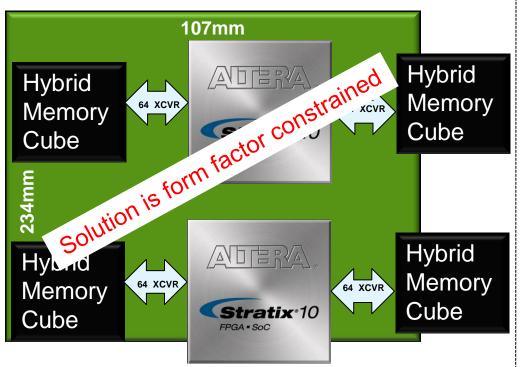
2 HMC Memories

320 GB/s BW /HMC

DRAM SiP

Memory: 0 (Included)

512-1024 GB/s BW


Drawings are NOT drawn to scale

High Performance Computing PCIe Acceleration Card Application

Required Bandwidth: 1000 GB/s

FPGA + Hybrid Memory Cube 30G VSR

2 FPGAs, 4 HMC Memories

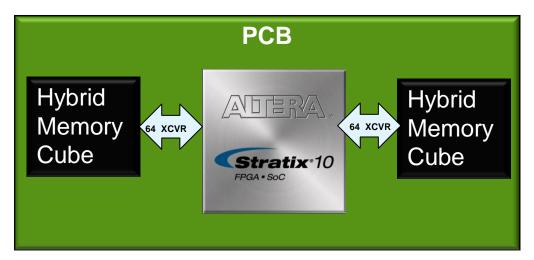
(FPGA: 52.5 mmX52.5 mm , 480 IO, 144 Transceiver

320 GB/s BW /HMC

Stratix 10 DRAM SiP

1 DRAM SiP, 512 – 1024 GB/s

(DRAM SiP: 52.5 mm X 52.5 mm)


Memory: 0 (Included)

Ultra HD 8K Viewer (8KP120) Application

Required Bandwidth: 431.52 GB/s

FPGA + Hybrid Memory Cube 30G VSR

1 FPGA

(FPGA: 52.5 mmX52.5 mm, 480 IO, 144 Transceiver)

2 HMC Memories

(HMC: 31 mmx31 mm)

320 GB/s BW / HMC

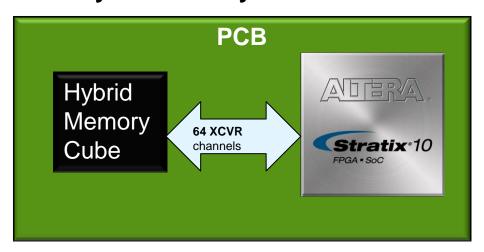
Stratix 10 DRAM SiP

1 DRAM SIP

(DRAM SiP: 52.5 mm x 52.5 mm)

Memory: 0 (Included)

512-1024 GB/s BW



Ultra HD 8K High End Camera Application

Required Bandwidth: 172 GB/s

Form factor critical application

Hybrid Memory Cube 30G VSR

1 FPGA

(FPGA: 52.5 mmX52.5 mm, 480 IO, 144 Transceiver)

1 HMC Memory

320 GB/s BW

NHK 8K camera in 10cm housing

Stratix 10 DRAM SiP

1 DRAM SIP

(DRAM SiP: 52.5 mm x 52.5 mm)

Memory: 0 (Included)

512-1024 GB/s BW

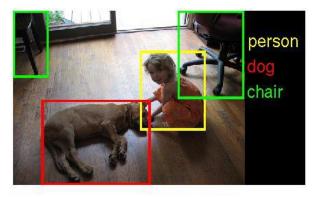
~50%+ Board space sayings

Summary – Stratix® 10 DRAM SiP

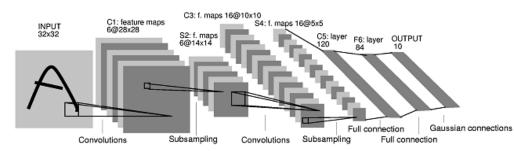
- Solves the memory bandwidth challenge
- Provides 10X memory bandwidth versus discrete solutions
- Enabled by innovative 3D SiP, EMIB and next-generation Stratix 10 FPGA technologies
- Enables key applications including wireline, broadcast, military, HPC, test, and more

CNN Case Study FPGA vs GPU

Performance & Power


Deep Learning: Convolutional Neural Network (CNN)

Convolutional Neural Network


- Feed forward artificial neural network
- Inspired by biological processes

Applications

- Classification & Detection
- Image recognition/tagging
- Big Data pattern detection
- Datastreaming Analytics
- Targeted ads
- Fraud & face detection
- Gaming

ImageNet

- ImageNet is a yearly competition held since 2010
 - Large Scale Visual Recognition Challenge.
 - 1.2 million images for training, 50,000 for validation, 100,000 for testing.
 - 1000 different image classes.

(b) Eskimo dog

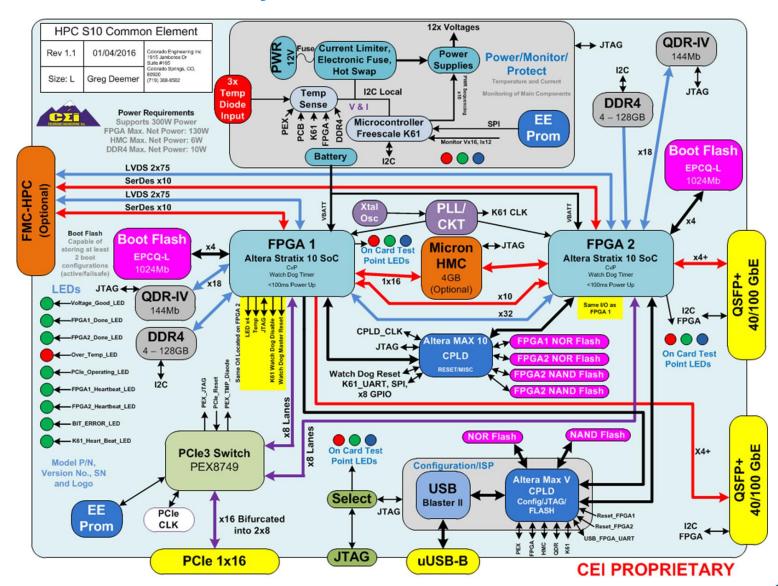
- 2012 Winner: AlexNet, top-5 error rate of 15.3%, 5 convolution layers
- 2014 Winner: GoogleNet, top-5 error rate of 6.67%, 22 layers in total
- 2015 Winner: Microsoft with 4.94% (Baidu was 4.8%, but was disqualified)
- Top-5 Error Rate: How often is the correct answer not in the top-5 results?
 - ▼ Trained human result: 5.1% Top-5 Error Rate, at 1 minute per image

AlexNet Competitive Analysis – Classification

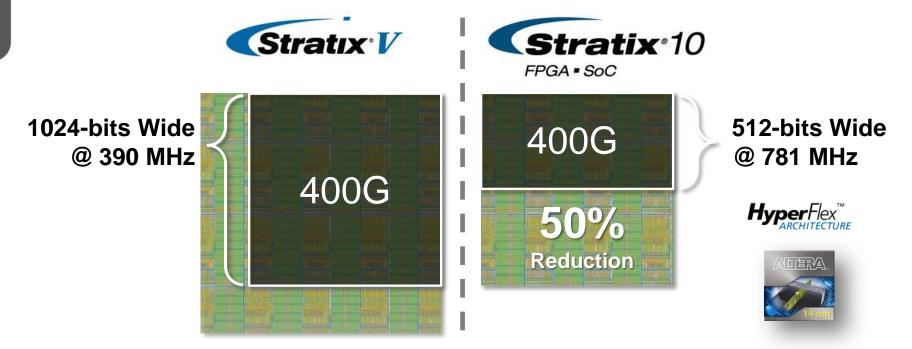
System	Throughput	Est. Power	Throughput / Watt
Arria 10-1150	600 img/s	~60W	10 img/s/W
2 x Arria 10-1150	1200 img/s	~90W	13.3 img/s/W
Caffe on NVIDIA TitanX with CUDA	1000 img/s	~250W	4 img/s/W

- FPGA competitive with GPUs on raw AlexNet throughput
 - Dominates in throughput per watt, for similar node GPU
- Expect similar ratios for Stratix 10 vs. NVIDIA 14nm Pascal

Stratix 10 Updates



Schedule


- Near the front of the line with direct Intel mfg support
- ✓ Next Update on Feb 17th
- S10 Common Element (S10CE) is meant to help with early S10 work
- Early Power Estimator (EPE) updates frequently
- Certify Partners in all GEOs on HyperFlex 2 Week Course

S10CE - Preliminary

Up to 70% Reduction in Power Consumption

Customer Designs	Power Savings Stratix V vs. Stratix 10
Wired Network	40% Less
Wireless Network	52% Less
Data Center Server	63% Less
Enterprise Storage	70% Less

Enables Higher FPGA Adoption in the Data Center

- Five Stratix V FPGAs
- PCIe Gen2 x8
- ✓ DDR3 x72 @ 800 MHz
- ▼ FPGA performance 250 MHz

- One Stratix 10 FPGA
- PCIe Gen3 x8
- ✓ DDR3 x144 @ 1.2 GHz
- ▼ FPGA performance 500 MHz

HyperFlex Delivers

- 2X core performance of FPGA
- 63% power reduction

OpenCL vs a++ Compiler Summary

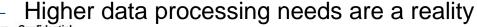
A** Compiler for HLS

- Targets CPU, GPU and FPGAs
- Target user is HW or SW
- Implements FPGA in software development flow
- Performance is determined by resources allocated
- Builds the entire FPGA system
- Host Required

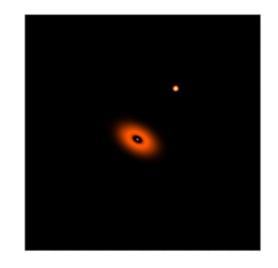
- Targets FPGAs
- Target user is HW
- Implements FPGA in traditional FPGA development flow

 Performance is defined and amount of resource to achieve is reported

- Builds an IP block
- Host is optional

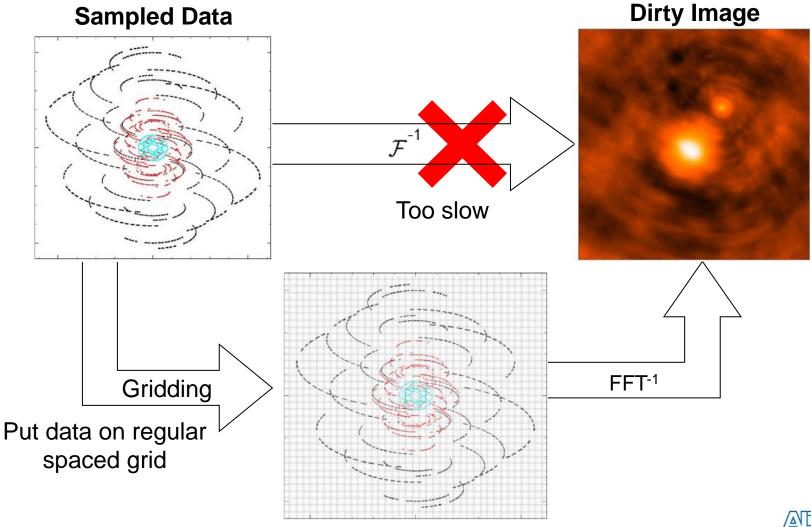


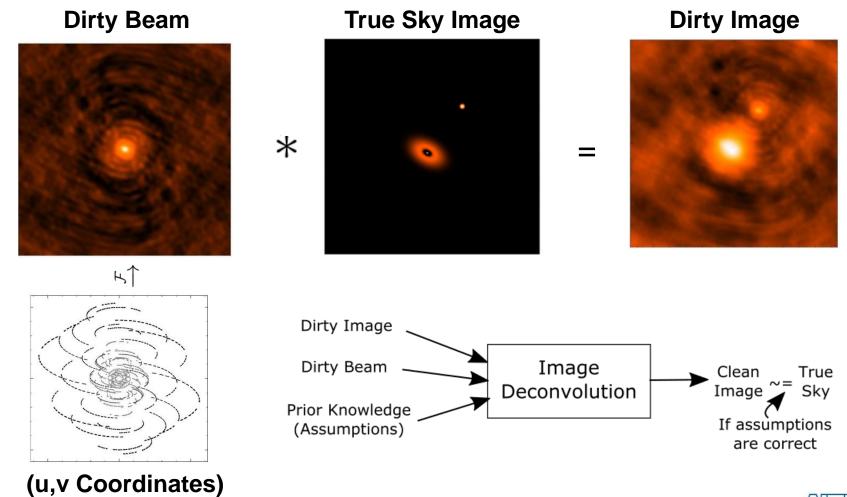
Altera Efforts for NRAO: Gridding + Image Deconvolution Updates



Project Potential

- Gridding and Image Deconvolutions are the current **bottlenecks** in post processing
 - Single Image Data: 100GB-400TB (Double Precision FP)
 - 100 CPUs take 1 day to process data. 1 CPU takes 10 days.
 - Final Image Resolution: ~1k*1k 15k*15k
 pixels
 - All processing done offline in batch
- Potentially scalable solutions using Altera FPGA for algorithm acceleration in conjunction to NRAO SW toolkit CASA

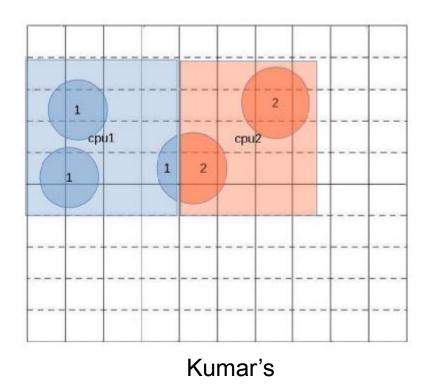


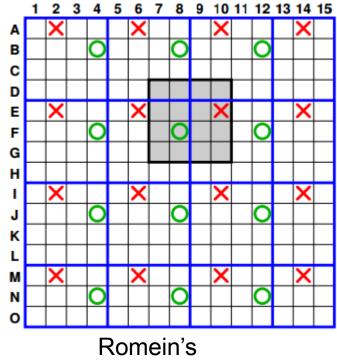

Technical Overview

How do we analyze the data?

Technical Overview

How can we make the data look better?




Project Scope

- Implementations of Gridding algorithms using OpenCL should provide 10x-20x performance boost
 - Altera working with partner ImpulseAccelerated for benchmarking source code
 - Need to test on ReFLEX Arria10 Dev kit
 - Testing planned on Arria10 or Stratix10 (due to Floating Point DSPs)
- Deploy and Test implementation within NRAO's development environment
- Develop and implement parallel algorithm for Image Deconvolution

Multithreaded gridding algorithms tested

Implementations/Progress

- Single-Threaded
 - Ran on S5, integrated with CASA. Slow- no parallelization
- ✓ Multi-Threaded (Kumar Golap NRAO)
 - Load balancing soln. partitioning, W-only projection
 - Ported from FORTRAN to C & integrated with CASA
- Multi-Threaded (John Romein ASTRON)
 - Sorts input data on host to increase locality
 - Trying to figure out if IDG is based off Romein's alg
- ✓ IDG (Bram Veenboer ASTRON)
 - Standalone (not sure if practical solution)
 - OpenCL implementation exists (from ImpulseAccelerated)
 - Still need results on A10 board
- - Not double-precision floating point numbers

Next Steps/Learnings

- Need to target multithreaded solutions
- Figure out which implementation is best-suited for FPGAs
- Simplify CASA integration by creating a more standalone application – this will allow faster development
- Implement the best (or more) implementations on AOCL using standalone app
 - Requires data re-organization if using Romein/IDG
- Profile timing and resources used
- Impulseaccelerated benchmarking projections:

	Platform	Runtime (s)	Clock	M Vis/Sec	Watts	K Vis/Watt	
	Stratix V - 5SGSMD8K	12.3	202 MHz	2.2	49	46	Include
	Intel I7-4970K @ 4.0GHz	15.3	4.0 GHz	1.8	120	15	no data with In
	GTX980 GPU	0.45	1.2 GHz	61.2	165	371	include
	Arria 10	2.05	400 MHz	13.4	50	269	estima
©	Stratix 10	0.41	600 MHz	67.2	70	960	estima

Thank You

