Fundamental Physics with SKA

Céline Boehm

Fundamental Physics with SKA

Cosmic Dawn and Epoch of Reionization (First Stars and Galaxies)
Galaxy Evolution (HI, Continuum)
Cosmology (Dark Energy, Dark Matter, Large-Scale-Structures)

Testing General Relativity (Strong Regime, Gravitational Waves)

The observable Universe

https://www.skatelescope.org/shared-sky/

But (so far) the only way to reproduce observations is to add a new sector

Standard Model of Elementary Particles

Relevance for Dark Matter

A simple set of equations to describe the evolution of the Universe

$$\begin{split} \dot{\theta}_{b} &= k^{2} \psi - \mathcal{H} \theta_{b} + c_{s}^{2} k^{2} \delta_{b} - R^{-1} \dot{\kappa} (\theta_{b} - \theta_{\gamma}) \\ \dot{\theta}_{\gamma} &= k^{2} \psi + k^{2} \left(\frac{1}{4} \delta_{\gamma} - \sigma_{\gamma} \right) - \dot{\kappa} (\theta_{\gamma} - \theta_{b}) , \\ \dot{\theta}_{DM} &= k^{2} \psi - \mathcal{H} \theta_{DM} , \end{split}$$

P(k) **Smaller scales Fourier transforms**

Testing the DM microphysics

without DM interactions

$$\begin{split} \dot{\theta}_b \; &=\; k^2 \psi - \mathcal{H} \theta_b + c_s^2 k^2 \delta_b - R^{-1} \dot{\kappa} (\theta_b - \theta_\gamma) \\ \dot{\theta}_\gamma \; &=\; k^2 \psi + k^2 \left(\frac{1}{4} \delta_\gamma - \sigma_\gamma \right) - \dot{\kappa} (\theta_\gamma - \theta_b) \;, \\ \dot{\theta}_{DM} \; &=\; k^2 \psi - \mathcal{H} \theta_{DM} \;, \end{split}$$

with DM interactions

$$\begin{split} \dot{\theta}_{b} &= k^{2} \psi - \mathcal{H} \theta_{b} + c_{s}^{2} k^{2} \delta_{b} - R^{-1} \dot{\kappa} (\theta_{b} - \theta_{\gamma}) \\ \dot{\theta}_{\gamma} &= k^{2} \psi + k^{2} \left(\frac{1}{4} \delta_{\gamma} - \sigma_{\gamma} \right) \\ &- \dot{\kappa} (\theta_{\gamma} - \theta_{b}) - \dot{\mu} (\theta_{\gamma} - \theta_{DM}) , \\ \dot{\theta}_{DM} &= k^{2} \psi - \mathcal{H} \theta_{DM} - S^{-1} \dot{\mu} (\theta_{DM} - \theta_{\gamma}) . \end{split}$$

Interacting Scenarios

Distribution of matter in the Universe

Rather than

The picture we have in mind is correct

How could SKA help?

Any models (dark energy, modified gravity etc)

SKA capability

AGNs Radio galaxies

Schwarz et al. 2015

Figure 1. Snapshots of the dark matter power spectra measured in simulations of a series of DM models. CDM and 0.6, 1.1, 2 and 3.5 keV heavy warmon WDM corresponding to respectively 10^9 , 10^8 , 10^7 and 10^6 h^{-1} M_{\odot} Lagrangian masses in the free-streaming length are shown. The power spectra have been divided by the linear growth factor to facilitate the comparison between redshifts. Note the exponential cut-off at z=30 in the spectrum of WDM models and the similarity of the spectra of all five models over the simulated scales at $z\leq 2$.

Dark Matter Indirect detection

Courtesy slide Anna Bonaldi

50 MHz to 14 GHz (eventually up to 30 GHz)

Dark Matter may annihilate/decay

Emission from DM

charged particles create photons

prompt emission (radiative correction)

Bremsstrahlung emission

Radio constraints

from our Milky Way

astro-ph/0208458 arXiv:1008.5175

Excludes up to 10 GeV particles for normal B field values

Microwave signals

arXiv:1105.4689

Figure 2. Synchrotron maps for 40 GeV dark matter particles $B=3\mu G$. We use the MED parameter set and assume annihilating particles.

see prospects for SKA: arXiv:1502.03738

Centaurus A

Reticulum II

Excess of gamma-rays (GeV range) but also 511 keV and radio

arXiv:1703.09921

Integral/SPI exposure map Courtesy: T. Siegert

Spikes in the DM density distribution

Conservation of momentum in adiabatic growth from initial to final state

$$r \ v(r) = cst$$

$$v(r) = (GM(r)/r)^{1/2}$$

$$\int_0^{r_i} \rho_i(r) r^2 dr = \int_0^{r_f} \rho_f(r) r^2 dr$$

$$\gamma_{\rm sp} = \frac{9 - 2\gamma}{4 - \gamma}.$$

NFW: 7/3 inner slope

$$\rho_{\rm sat} = \frac{m_{\rm DM}}{\langle \sigma v \rangle t_{\rm BH}}$$

+ spikes can be destroyed by galaxy dynamics.

stellar heating (+ mergers, non adiabatic contraction)

Implication of a DM spike for the MW

synchrotron emission of electrons and positrons

1311.0139

Figure 7.1: 30 GHz maps of the synchrotron intensity induced by 10 GeV DM particles, for $\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$, $B = 3 \mu\text{G}$, and the MED set of propagation parameters. The DM profiles used are a spiky profile with $\gamma_{\rm sp} = 7/3$, $R_{\rm sp} = 1$ pc, with $r_{\rm sat} = r_{\rm sat}^{\rm ann}$ (**left panel**), and the NFW profile (**right panel**).

Black Hole shadow with EHT

arXiv:1611.01961

EHT will access angular scales as small as 26 µas at 230 GHz and 17 µas at 345 GHz.

Conclusion

Radio astronomy can probe the parameter space

heading toward higher masses and/or weaker interactions (unless the DM only interacts in the dark sector)

Still anomalies: will SKA help? Cen A, Ret II

DM annihilations near BH MW, M87, BH shadow

will SKA help?

Power Spectrum new models & Ho (?)