Observing galaxy clusters in SZ with the SKA

Yvette Perrott Rutherford Discovery Fellow, VUW S4SKA, AUT 13/02/2018

Image: IDCS J1426
By ESA/Hubble, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=46299179

Galaxy clusters

Galaxies	~1%	Can contain ~100 to 1000 galaxies
Intracluster gas	~9%	Mostly ionised H and He, temperatures of 10- 100 MK
Dark matter	~90%	Largest component but difficult to observe!

- Total mass $\sim 10^{14} 10^{15}$ solar masses
- . Typical diameter ~2 10 MPc

Observing the gas - SZ

- Can observe the gas in X-rays (thermal Bremsstrahlung)
- Hot gas also interacts
 with Cosmic Microwave
 Background photons
 via an inverseCompton-scattering
 process, the SunyaevZel'dovich effect

Sunyaev-Zel'dovich Effect

Inverse Compton scattering process

Observing the gas - SZ

- SZ effect is proportional to the pressure of the gas
- Good correlation with total mass of cluster
- Relatively insensitive to redshift since it's a scattering effect

SZ with the SKA

Artist's impression of SKA-mid in South Africa (www.skatelescope.org)

- Top frequency band will go high enough to measure SZ effect
- SKA1-MID will have 133 antennas, baselines up to 100,000m

- >10σ detection of a 4x10¹⁴ solar mass cluster at z=1.83 in one hour!
- . cf 3σ detection in 18 hours with AMI...

Advantages of the SKA

Current SZ instruments

Instrument	Resolution	Area surveyed
Planck	~5 arcmin	Full sky
ACT(Pol)	~1.4 arcmin	987.5 deg ²
SPT	~1 arcmin	2500 deg ²
AMI	~3 arcmin	Follow-up (~24 hrs / cluster)
NIKA2	~15 arcsec	Follow-up (~10 hrs / cluster)
SKA	~0.04 arcsec to 2 arcmin	Follow-up (~1 hr / cluster)

uv-plane Bayesian evidence ratios

Current SZ surveys nowhere near as deep, even deep surveys on small patches (ACT, SPT)

Synergies with upcoming observatories

SZ – Simons Observatory, CMB-S4

Planck cluster/CMB tension

- Cosmological constraints derived from latest Planck cluster number counts are in tension with CMB constraints
- One problem is certainly the massobservable calibration...

From Planck 2015 results XXIV.

Modelling the observable

From Arnaud+ 2010. Scaled profiles (black) and average profile (green)

- Common practice for modelling SZ and X-ray is to use the "Universal Pressure Profile" (UPP)
- Only free parameters are θ_s (angular stretch parameter) and Y_{tot} (flux scaling parameter)
- Other shape parameters γ , α , β are fixed to the average values fitted to the stacked profiles in Arnaud+ 2010.

Modelling the observable

- In Perrott+ 2015 we showed that parameter constraints on θ_s and Y_{tot} derived from AMI interferometric SZ data were discrepant with the Planck values
- This could be explained by the pressure profile deviating from the UPP shape

Modelling the observable

- In Perrott+ 2019 we show that having different pressure profiles does matter, even for Planck
- Eg parameter constraints when assuming the UPP in analysis, but cluster is generated with a different profile:

Varying shape parameters

Pink = all parameters varying Black/red = only θ_s and Y_{tot} Black stars, lines = true values

cf ALMA

- Profile of the same cluster in the uvplane
- NB θ_s = 1.2 arcmin corresponds to uvdistance = 2800 λ

Red = SKA Black = ACA

Blue = ALMA

cf ALMA

- Constraints on cluster model parameters for a one hour observation of a z=1, M₂₀₀=5x10¹⁴ M_{sun} cluster
- Similar weak constraints on γ , α
- ALMA+ACA gives much worse constraint on θ_s and Y_{tot}

Pink = ALMA + ACA Black = SKA Black stars, lines = true values

Current SZ surveys nowhere near as deep, even deep surveys on small patches (ACT, SPT)

Higher angular resolution will aid in better characterisation of the SZ signal

Thank you!

"Smiley cluster": NASA/ESA