Manycore and GPU Channelisers

Seth Hall
High Performance Computing Lab, AUT

GPU Accelerated Computing

- GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU to accelerate applications
- GPU-accelerated computing offers unprecedented application performance by offloading computeintensive portions of the application to the GPU, while the remainder of the code still runs on the CPU

CPU vs GPU Computing

- A simple way to understand the difference between a CPU and GPU is to compare how they process tasks
- A CPU consists of a few cores optimized for sequential serial processing while a GPU has a massively parallel architecture consisting of thousands of smaller, more efficient cores designed for handling multiple tasks simultaneously
- GPUs have thousands of cores to process parallel workloads efficiently

Hardware being Tested

Many-core Architectures

- Adaptiva Epiphany Parallella
- Kalray MPPA

GPU based Architectures

- Nvidia Tegra K1
- Nvidia Tesla K40

Parallelising and implementing FFTs

- What we have been focusing on in the HPC Lab is how to efficiently parallelize large FFTs on the Many-core and GPU based architectures.
- Concern not just about timings, but particularly power efficiency of the boards.
- Approach being used is a six-step FFT
- For an N size FFT we can break it up into two sets of m x n number of FFTs
- Example 16 point FFT can be broken up into two series of 4x4 FFTs run in parallel.
- We can choose m and n depending on the architecture.
- Example how much memory is near the processing cores

Radix-2 Decimation In Frequency 6 Step FFT

Parallelized Radix-2 Decimation In Frequency 6 Step FFT

- 1. Rearrange input data (group same colours together)
- 2. Perform m (number of coloured groups) lots of n (number of points in the group) FFTs in parallel (depending on number of cores available)
- 3. Multiplied each by twiddle correction
- 4. Rearrange the data again
- 5. Perform n lots of m point FFTs all in parallel
- 6. Rearrange data (bit reversal).

Jetson TK1 Specs

- Tegra K1 SOC
- NVIDIA Kepler GPU with 192 CUDA cores
- NVIDIA quad-core ARM Cortex-A15
 CPU + low power companion core
- 2 GB RAM
- Power consumption: 5 watts
- About 50 times faster than Tegra 2
- OpenGL ES 3.1 & CUDA 6.5 support

Tegra K1 vs Tesla K40

- The reason we are mostly looking at more low power GPU (K1) over the more powerful K40 is for power efficiency.
- K40's board power (235 watts) vs K1's (5 Watts)
- K40 5 TFLOPS (single precision) K1 0.36 TFLOPS
- Actually K1 better performance in terms of FLOPS per watt of power

Implementation of FFTs on TK1

- Implementation of FFT on TK1 using CUDA and CuFFT library.
- CuffT is a closed source library for an FFT implementation using the GPU.
- Support for combining multiple GPU to perform FFTs and also allows batch processing of multiple FFTs in parallel.
- Timings done and discovered can do a 2^{18} FFT in mere milliseconds. Most of the time delay is the I/O data transfers from CPU to GPU and creation of a plan.
- Planning a Open GL ES programmable shader implementation of 6 step FFT and seeing how it compares to CUDA the version.

Epiphany Parallella Specs

- Zynq-Z7010 or Z7020 Dual-core ARM A9
 CPU
- 16-core Epiphany co-processor
- 1 GB RAM
- 5 Watts power

Epiphany Architecture

Company claims 4096 RISC cores planned by 2016!

Kalray MPPA Specs

- Massively Parallel Processing Array.
- 5 watts power consumption but can reach up to 10 watts when high processing power is needed.
- 256 cores.
- 2 x PCI Express bus.

Kalray MPPA 256 Architecture

FFTs on Kalray MPPA

- French student Julien Hascoet worked on implementing FFTs efficiently on the Kalray MPPA.
- 2¹⁸ single precision point FFT was broken up into 512 FFTs of 512 points.
- Using only a single core on a cluster was able to execute an FFT in 110.38mS and using all 16 cores in a cluster 7.94mS (speedup of 13.9)
- Times do not include transfer speeds to memory
- Kalray has another 15 clusters that could be used to perform more FFTs

AFTERNOON TEA TIME!!!!

