VDIF2 **Addressing VDIF limitations** **Chris Phillips** | LBA Lead Scientist 24 November 2015 ASTRONOMY AND SPACE SCIENCE www.csiro.au ### **VDIF** - Developed in 2009 as a "unified" VLBI data format - Suitable for disk and eVLBI - Ratified 26 June 2009 8th International eVLBI workshop (Madrid) ### **VDIF - Header** | | Bit 31 (MSB)
Byte 3 | | | | yte 2 | Byte 1 | Bit 0 (LSB)
Byte 0 | | |--------|---|--|---------------------------------------|------------------------|--|--------|-----------------------|--| | Word 0 | I_1 | I ₁ L ₁ Seconds from reference epoch ₃₀ | | | | | | | | Word 1 | Un-
assigned ₂ | | Ref Epoch ₆ | | Data Frame # within second ₂₄ | | | | | Word 2 | V_3 | | log ₂ (#chns) ₅ | | Data Frame length (units of 8 bytes) ₂₄ | | | | | Word 3 | C ₁ bits/sample-1 ₅ | | T | hread ID ₁₀ | Station ID ₁₆ | | | | | Word 4 | EDV_8 | | | | Extended User Data ₂₄ | | | | | Word 5 | Extended User Data ₃₂ | | | | | | | | | Word 6 | Extended User Data ₃₂ | | | | | | | | | Word 7 | Extended User Data ₃₂ | | | | | | | | ### **VDIF Limitations** - Must be an integral number of frames per second - Implies integral number of samples/sec - Must be 2ⁿ channels/thread - All channels must fit within single frame - Limited # channels for network based transport - Poor efficiency packing non-power 2 bits - Do we really care? - Does not support multibeam instruments # Real word examples #### **ASKAP** - Sampling rate of 32/27 MHz - 18% oversampling to reduce baseline ripple with multi-stage filterbanks - Effelsberg/Parkes PAF same formatting #### **GMRT** - 16¾ MHz bandwidth - Phased in frequency domain #### **MWA** 10 kHz phase array data #### **SKA-Low** - Oversampled data rate like ASKAP - Many beams, many stations # Real word examples (cont) #### Parkes PAF - Sampling rate of 32/27 MHz - 36 beams - 48 Threads - Cannot encode as 1024 unique threads - 14 channels/beam - Dual pol ### VDIF2 - VDIF2 proposed by Alan Whitney 2011 - Reviving as need format for Parkes PAF now - Addresses sampling rate, packing efficiency, large number of channels - Much more flexible than VDIF...... Bit 31 (MSB) Bit 0 (LSB) Byte 3 Byte 2 Byte 1 Byte 0 Word 0 C_1 Seconds from reference epoch at beginning of current Period₃₀ I_1 Word 1 Data Frame # within current Period₃₂ bits/sample₅ Word 2 Data Array length-1 (units of 8 bytes)₂₄ V_3 Word 3 Unassigned₆ Ref Epoch₆ $\mathbf{R}_{\mathbf{A}}$ Station ID₁₆ Word 4 Sample Block length-1 (units of 8 bytes)₁₆ #chns-1₁₆ Word 5 Thread ID₁₆ Group ID₁₆ Word 6 Reserved for future use₁₆ Period-1 (seconds)₁₆ Word 7 Reserved for future use₃₂ Word 8 #Sample Intervals per Period (MSB)₃₂ Word 9 #Sample Intervals per Period (LSB)₃₂ Word 10 Synchronization word₃₂ Word 11 Reserved for VTP use₃₂ Word 12 EDV₈ Extended User Data₂₄ Word 13 Extended User Data₃₂ Word 14 Extended User Data₃₂ Word 15 Extended User Data₃₂ ## **VDIF2** sample rate - Relax requirement of integral # frames/sec - Introduce frame period - Must be integral # frames/period - Frame count increases monotonically over period - Does not reset every second - ASKAP 32/27 MHz needs period of 27 seconds - GMRT 16% MHz needs period of 3 seconds # **VDIF2** channel layout - Pack individual channel samples tightly, regardless of # bits. This forms a "complete sample". - Pack 1 or more complete samples into a sample block - Samples blocks are an integral # 64bit words. - Sample block not necessarily completely filled - Data array within data frame not constrained by size of sample block - Sample block can be larger, the same or smaller than data array size #### **VDIF2 - Pros** - Encode sample rates which are impossible with VDIF and exist in current or next generation telescopes. - More efficient for "odd" bit encoding - Allow larger number of channels ### **VDIF2 - Cons** - Much, much more complicated - Introduces yet another data format - VDIF2 naming introduces expectation that correlators will universally be able to cope with it (and of all types) - Much more complicated ## **Options** - Embraced VDIF2 as necessary - It's just software, after all - Reject it as a bad idea - Suggest different VDIF inspired data format to be used - Format exists in parallel with VDIF - But how does the VLBI community deal with data which cannot be handled with VDIF1 ATNF have engineers waiting for an answer.... # Thank you **Astronomy and Space Science** Dr Chris Phillips LBA Lead Scientist +61 2 93724608 e Chris.Phillips@csiro.auw www.atnf.csiro.au www.csiro.au