

VDIF2

Addressing VDIF limitations

Chris Phillips | LBA Lead Scientist 24 November 2015

ASTRONOMY AND SPACE SCIENCE www.csiro.au

VDIF

- Developed in 2009 as a "unified" VLBI data format
 - Suitable for disk and eVLBI
 - Ratified 26 June 2009 8th International eVLBI workshop (Madrid)

VDIF - Header

	Bit 31 (MSB) Byte 3				yte 2	Byte 1	Bit 0 (LSB) Byte 0	
Word 0	I_1	I ₁ L ₁ Seconds from reference epoch ₃₀						
Word 1	Un- assigned ₂		Ref Epoch ₆		Data Frame # within second ₂₄			
Word 2	V_3		log ₂ (#chns) ₅		Data Frame length (units of 8 bytes) ₂₄			
Word 3	C ₁ bits/sample-1 ₅		T	hread ID ₁₀	Station ID ₁₆			
Word 4	EDV_8				Extended User Data ₂₄			
Word 5	Extended User Data ₃₂							
Word 6	Extended User Data ₃₂							
Word 7	Extended User Data ₃₂							

VDIF Limitations

- Must be an integral number of frames per second
 - Implies integral number of samples/sec
- Must be 2ⁿ channels/thread
- All channels must fit within single frame
 - Limited # channels for network based transport
- Poor efficiency packing non-power 2 bits
 - Do we really care?
- Does not support multibeam instruments

Real word examples

ASKAP

- Sampling rate of 32/27 MHz
 - 18% oversampling to reduce baseline ripple with multi-stage filterbanks
 - Effelsberg/Parkes PAF same formatting

GMRT

- 16¾ MHz bandwidth
 - Phased in frequency domain

MWA

10 kHz phase array data

SKA-Low

- Oversampled data rate like ASKAP
- Many beams, many stations

Real word examples (cont)

Parkes PAF

- Sampling rate of 32/27 MHz
- 36 beams
- 48 Threads
 - Cannot encode as 1024 unique threads
- 14 channels/beam
 - Dual pol

VDIF2

- VDIF2 proposed by Alan Whitney 2011
- Reviving as need format for Parkes PAF now
- Addresses sampling rate, packing efficiency, large number of channels
- Much more flexible than VDIF......

Bit 31 (MSB) Bit 0 (LSB) Byte 3 Byte 2 Byte 1 Byte 0 Word 0 C_1 Seconds from reference epoch at beginning of current Period₃₀ I_1 Word 1 Data Frame # within current Period₃₂ bits/sample₅ Word 2 Data Array length-1 (units of 8 bytes)₂₄ V_3 Word 3 Unassigned₆ Ref Epoch₆ $\mathbf{R}_{\mathbf{A}}$ Station ID₁₆ Word 4 Sample Block length-1 (units of 8 bytes)₁₆ #chns-1₁₆ Word 5 Thread ID₁₆ Group ID₁₆ Word 6 Reserved for future use₁₆ Period-1 (seconds)₁₆ Word 7 Reserved for future use₃₂ Word 8 #Sample Intervals per Period (MSB)₃₂ Word 9 #Sample Intervals per Period (LSB)₃₂ Word 10 Synchronization word₃₂ Word 11 Reserved for VTP use₃₂ Word 12 EDV₈ Extended User Data₂₄ Word 13 Extended User Data₃₂ Word 14 Extended User Data₃₂ Word 15 Extended User Data₃₂

VDIF2 sample rate

- Relax requirement of integral # frames/sec
- Introduce frame period
 - Must be integral # frames/period
 - Frame count increases monotonically over period
 - Does not reset every second
- ASKAP 32/27 MHz needs period of 27 seconds
- GMRT 16% MHz needs period of 3 seconds

VDIF2 channel layout

- Pack individual channel samples tightly, regardless of # bits. This forms a "complete sample".
- Pack 1 or more complete samples into a sample block
 - Samples blocks are an integral # 64bit words.
 - Sample block not necessarily completely filled
- Data array within data frame not constrained by size of sample block
 - Sample block can be larger, the same or smaller than data array size

VDIF2 - Pros

- Encode sample rates which are impossible with VDIF and exist in current or next generation telescopes.
- More efficient for "odd" bit encoding
- Allow larger number of channels

VDIF2 - Cons

- Much, much more complicated
- Introduces yet another data format
- VDIF2 naming introduces expectation that correlators will universally be able to cope with it (and of all types)
- Much more complicated

Options

- Embraced VDIF2 as necessary
 - It's just software, after all
- Reject it as a bad idea
- Suggest different VDIF inspired data format to be used
 - Format exists in parallel with VDIF
 - But how does the VLBI community deal with data which cannot be handled with VDIF1

ATNF have engineers waiting for an answer....

Thank you

Astronomy and Space Science Dr Chris Phillips LBA Lead Scientist

+61 2 93724608

e Chris.Phillips@csiro.auw www.atnf.csiro.au

www.csiro.au

