Metre-wavelength VLBI with the International LOFAR Telescope

Adam Deller, Javier Moldon, the LOFAR Long Baseline Working Group & more

4C55.16: Moldon et al., in prep

Why go long at low frequencies?

- * Resolution, resolution, resolution
- * For even moderately compact structure at low frequency, you **need** long baselines
- * 0.7" corresponds to:
 - * 3 km baselines @ 45 GHz (VLA C array)
 - * 9 km baselines @ 15 GHz (VLA B array)
 - * 27 km baselines @ 4.5 GHz (VLA A array)
 - * 100 km baselines @ 1.4 GHz (E-MERLIN)
 - * 1200 km baselines @ 120 MHz (Intl. LOFAR)

m-wave VLBI: not new!

Fig. 1. Map of United States showing stations and baselines used

in low-frequency experiments described in Table I. NOVEMBER 1975

THE ASTRONOMICAL JOURNAL

VOLUME 80, NUMBER 11

Meter-wavelength VLBI. II. The observations

T. A. Clark, W. C. Erickson, L. K. Hutton, G. M. Resch, and N. R. Vandenberg* Goddard Space Flight Center, Greenbelt, Maryland, University of Maryland, College Park, Maryland

TABLE I. Low-frequency VLBI experiments.

Experiment number	Date	Freq. (MHz)	Telescopes			Baseline		Eringe er	nacina
			Name	Symbol ^a Size (m)		Symbol ^a Length (Mλ)		Fringe spacing (arcsec)	
1	10-12 Jan. 1970	121.6	Maryland Point NRAO	M N	25 92	MN	0.092	2.2	
2	9–14 Mar. 1971	144.3	Sugar Grove Vermilion River Owens Valley	S V O	46 36 40	SV SO VO	0.36 1.27 1.62	0.55 0.16 0.12	
3	23–24 Nov. 1971 19–20 Dec. 1971 23–24 Jan. 1972 25–27 Feb. 1972 26–28 Mar. 1972	196.5 and 111.5	Arecibo NRAO Sugar Grove	A N S	305 92 46	AN AS NS AN AS NS	1.7 1.6 0.033 0.94 0.93 0.019	6 0.20	196.5) 111.5)
4	4- 9 Dec. 1973 23 Feb. 1973 2 Mar. 1973	111.5 and 74.0				AN AS NS	0.62 0.62 0.022	$0.30 \\ 0.30 \\ 15$	74.0)

^a These symbols will be used throughout other tables.

International LOFAR stations

- * High band array: 110-240 MHz
- * Low band array: 15-90 MHz

The International LOFAR array

The International LOFAR array

M82: starburst galaxy, supernova remnant laboratory

Science Highlights: M82

Early ILT observations (challenging): 0.3" resolution, 150 µJy/beam rms @ 150 MHz

Varenius et. al., 2015, A&A, 574, 114

Science Highlights: 4C55.16

* 4C55.16 is a z = 0.24 radio galaxy at the centre of a cool-core galaxy cluster

Science Highlights: 4C55.16

* 10x lower frequency than VLA yet better resolution & 100 µJy rms! Trace steep-spectrum (-1.6, -1.3) lobe emission better

Moldon et al., in prep

Science Highlights: 4C55.16

LOFAR 120 MHz

Hot off the press: at the lowest HBA frequencies, "missing" radio emission tracing western cavity discovered!

 Extraordinarily steep spectrum, old electron population

Varenius, Conway et al. in prep

Differences with traditional VLBI;

or, why making these images was no piece of cake

- * Sensitivity is squeezed front and back:
 - Sky noise is higher
 - Calibrator sources are fainter (most compact sources are flat or inverted)
- * But we have a lot of collecting area, which helps to compensate:
 - * Single international station 2,000 m², 800 Jy
 - * Combined core stations: 25,000 m², 65 Jy

Differences with traditional VLBI;

or, why making these images was no piece of cake

- * The real killer is the ionosphere:
 - * delay_{iono} $\propto \lambda^2$
 - * At 1.5 GHz, you get relative delays ~ few ns
 - * At 0.15 GHz, that becomes ~ few 100 ns
 - * And 2x greater at 120 MHz vs 170 MHz...
 - * >1 μs at 60 MHz and below!

Differences with traditional VLBI

Current Intl. LOFAR calibration

- * A series of "non-standard" (compared to short-baseline LOFAR) steps:
 - Calibrate, phase up core stations into "super-station" (visibility summation, offline)
 - * Convert to circular polarisation (avoid problems with Faraday rotation)
 - * Aggregate bandwidth in relatively narrow subbands (2-3 MHz)
 - Solve with traditional VLBI tools (FRING, CALIB)

Goals for the future

Phase

The link to cm VLBI

- * A dispersive-delay-enabled fringe fitter is useful for wideband observations up to at least a few GHz:
 - * Current observations (e.g., 256 MHz bandwidth at 1.5 GHz) are already limited by ionospheric variations
 - * Of particular interest to pulsar astrometry (steep spectrum targets bias position errors)
 - * Developing this for CASA has multiple benefits: no need for format conversions, insurance against eventual lack of AIPS support

Conclusions

* It's VLBI gone full circle - but better! Because...

"At metre wavelengths, International LOFAR can resolve the sub-arcsecond structure of sub-mJy sources"

