Metre-wavelength VLBI with the International LOFAR Telescope Adam Deller, Javier Moldon, the LOFAR Long Baseline Working Group & more 4C55.16: Moldon et al., in prep # Why go long at low frequencies? - * Resolution, resolution, resolution - * For even moderately compact structure at low frequency, you **need** long baselines - * 0.7" corresponds to: - * 3 km baselines @ 45 GHz (VLA C array) - * 9 km baselines @ 15 GHz (VLA B array) - * 27 km baselines @ 4.5 GHz (VLA A array) - * 100 km baselines @ 1.4 GHz (E-MERLIN) - * 1200 km baselines @ 120 MHz (Intl. LOFAR) #### m-wave VLBI: not new! Fig. 1. Map of United States showing stations and baselines used in low-frequency experiments described in Table I. NOVEMBER 1975 THE ASTRONOMICAL JOURNAL VOLUME 80, NUMBER 11 #### Meter-wavelength VLBI. II. The observations T. A. Clark, W. C. Erickson, L. K. Hutton, G. M. Resch, and N. R. Vandenberg* Goddard Space Flight Center, Greenbelt, Maryland, University of Maryland, College Park, Maryland TABLE I. Low-frequency VLBI experiments. | Experiment number | Date | Freq. (MHz) | Telescopes | | | Baseline | | Eringe er | nacina | |-------------------|---|-----------------------|--|------------------------------|-----------------|----------------------------------|--|-------------------------|------------------| | | | | Name | Symbol ^a Size (m) | | Symbol ^a Length (Mλ) | | Fringe spacing (arcsec) | | | 1 | 10-12 Jan. 1970 | 121.6 | Maryland Point
NRAO | M
N | 25
92 | MN | 0.092 | 2.2 | | | 2 | 9–14 Mar. 1971 | 144.3 | Sugar Grove
Vermilion River
Owens Valley | S
V
O | 46
36
40 | SV
SO
VO | 0.36
1.27
1.62 | 0.55
0.16
0.12 | | | 3 | 23–24 Nov. 1971
19–20 Dec. 1971
23–24 Jan. 1972
25–27 Feb. 1972
26–28 Mar. 1972 | 196.5
and
111.5 | Arecibo
NRAO
Sugar Grove | A
N
S | 305
92
46 | AN
AS
NS
AN
AS
NS | 1.7
1.6
0.033
0.94
0.93
0.019 | 6
0.20 | 196.5)
111.5) | | 4 | 4- 9 Dec. 1973
23 Feb. 1973
2 Mar. 1973 | 111.5
and
74.0 | | | | AN
AS
NS | 0.62
0.62
0.022 | $0.30 \\ 0.30 \\ 15$ | 74.0) | ^a These symbols will be used throughout other tables. #### International LOFAR stations - * High band array: 110-240 MHz - * Low band array: 15-90 MHz # The International LOFAR array # The International LOFAR array M82: starburst galaxy, supernova remnant laboratory # Science Highlights: M82 Early ILT observations (challenging): 0.3" resolution, 150 µJy/beam rms @ 150 MHz Varenius et. al., 2015, A&A, 574, 114 # Science Highlights: 4C55.16 * 4C55.16 is a z = 0.24 radio galaxy at the centre of a cool-core galaxy cluster # Science Highlights: 4C55.16 * 10x lower frequency than VLA yet better resolution & 100 µJy rms! Trace steep-spectrum (-1.6, -1.3) lobe emission better Moldon et al., in prep # Science Highlights: 4C55.16 #### LOFAR 120 MHz Hot off the press: at the lowest HBA frequencies, "missing" radio emission tracing western cavity discovered! Extraordinarily steep spectrum, old electron population Varenius, Conway et al. in prep # Differences with traditional VLBI; or, why making these images was no piece of cake - * Sensitivity is squeezed front and back: - Sky noise is higher - Calibrator sources are fainter (most compact sources are flat or inverted) - * But we have a lot of collecting area, which helps to compensate: - * Single international station 2,000 m², 800 Jy - * Combined core stations: 25,000 m², 65 Jy ## Differences with traditional VLBI; or, why making these images was no piece of cake - * The real killer is the ionosphere: - * delay_{iono} $\propto \lambda^2$ - * At 1.5 GHz, you get relative delays ~ few ns - * At 0.15 GHz, that becomes ~ few 100 ns - * And 2x greater at 120 MHz vs 170 MHz... - * >1 μs at 60 MHz and below! ## Differences with traditional VLBI ## Current Intl. LOFAR calibration - * A series of "non-standard" (compared to short-baseline LOFAR) steps: - Calibrate, phase up core stations into "super-station" (visibility summation, offline) - * Convert to circular polarisation (avoid problems with Faraday rotation) - * Aggregate bandwidth in relatively narrow subbands (2-3 MHz) - Solve with traditional VLBI tools (FRING, CALIB) #### Goals for the future Phase #### The link to cm VLBI - * A dispersive-delay-enabled fringe fitter is useful for wideband observations up to at least a few GHz: - * Current observations (e.g., 256 MHz bandwidth at 1.5 GHz) are already limited by ionospheric variations - * Of particular interest to pulsar astrometry (steep spectrum targets bias position errors) - * Developing this for CASA has multiple benefits: no need for format conversions, insurance against eventual lack of AIPS support #### Conclusions * It's VLBI gone full circle - but better! Because... "At metre wavelengths, International LOFAR can resolve the sub-arcsecond structure of sub-mJy sources"