
Dr William Kamp
Senior Research Officer (Engineer)

High Performance Computing Research Lab
AUT

Advanced eXtensible Interface over Ethernet

AXIoE

MID Central Beam Former

World’s largest - high performance - low power
- distributed - embedded system.

Thousands of FPGA supported by hundreds of
microcontrollers.

Need a way to configure the FPGA datapath
for the various bands/modes.

Need to monitor the health of the subsystems.

FPGA

2

FPGA Application Monitor and Control (AMC)
Extending the memory bus
(AMBA AXI) on an FPGA,

via Gigabit Ethernet,
to the Monitor and Control Application.

3

Design Goals

Reliable and in-order access
to the FPGA memory space. Server (FPGA side) is kept simple.

Client (Application side) holds the complexity.

Simplify
Application

Programming

Resource efficient
implementation

in FPGA

Efficient
bulk data
transport

4

Presenter
Presentation Notes
Simplify Application Software.
Network communication needs to be predictable.
If you ask for some data then you should expect to get it.
If you ask to turn something on, it should turn on.
If something goes wrong in the communication, then you should be told about it.
Data transport should be transparent. The application should not have to worry about if a packet is lost.
You should solve the problem or error in the domain it occurs.
If a packet is corrupted on the network, then the network protocol should correct the corruption and recover.
There should be no need to have the application involved.

Resource Efficient.
FPGAs have lots of other important things to do, rather than waste resources on communication and error recovery.
Complexity or error recovery handled at the Client (application), rather than at the server (FPGA).

Network Efficient.
Have thousands of FPGA to communicate with, we want to be efficient about how we transport data - minimise overhead.
Could have up to 17 devices sharing a single Gigabit link.

Traditional Transport Protocol Options

Simplify AMC Software
(Reliable Transport)

Server-(FPGA)-Side Resource
Efficiency (Simplicity)

Network Efficiency
(Low Overhead)

TCP ✔
Error recovery built in.

❌
Complex sliding window algorithm

~
16 byte header

UDP ❌
No error recovery

✔
Simple packet based flow

✔
8 byte header

5

Presenter
Presentation Notes
Traditionally two transport protocol options, TCP and UDP.
Neither meets all my requirements.
UDP joke. I’ve got a UDP joke for you.

Introducing AXIoE

A new transport protocol, to meet my design
requirements.

AXI - Advanced eXtensible Interface

➢a memory bus specification from ARM.

➢supported by both Xilinx and Altera (via Qsys).

o - over

E - Ethernet

6

Presenter
Presentation Notes
Sliding window algorithm, like TCP uses, but is asymmetric to keep server resources light.
Half the memory requirements of TCP.

Introducing AXIoE
Simplicity is key.

1. Built on UDP.

2.Adds a simple “sliding window algorithm”.

3. Designed for low resource usage at the
embedded device (server).

4. Encapsulates AMBA AXI bus transactions
(Read/Write blocks of memory).

5. Can stack multiple AXI transactions into each
packet. 7

Presenter
Presentation Notes
Sliding window algorithm, like TCP uses, but is asymmetric to keep server resources light.
Half the memory requirements of TCP.

Packet Format (UDP Payload)

Global Packet Header

8

Transaction Header

Transaction Address

Transaction Data

Another Transaction

Server - Designed to be cheap.

Simple behaviour:

- One packet in - One packet out.

- One decision fork.

Requires memory to store only a single packet.

- More memory = bigger window = better performance.

- Half the memory of TCP.

Client responsible for enacting all error recovery behaviour.
9

Server Logic
E

th
er

ne
t/I

P
/U

D
P

P
ac

ke
t T

yp
e

Expected
Sequence
Number

(exp)

U
D

P
/IP

/E
th

er
ne

t

Replay
Cpl

Buffer

Replay
Cpl

Buffer

Replay
Cpl

Buffer

Probe

Nack-seq

Request-seq

Probe-exp
Probe

seq == exp?

False Nack-exp
Nack

Process
Transactions

True

Cpl-seq

Completion-seq

exp = seq + 1

10

AXIoE Protocol
Client - Server protocol

Sliding window algorithm for performance and error recovery.

Uses an 8-bit packet sequence number.

3 types of packets
- with a common header format for easy parsing.

Client to Server Server to Client

Request (Req) Completion (Cpl)

Negative Acknowledge (Nack) Negative Acknowledge (Nack)

Probe (Prb) Probe (Prb)
11

Where we are at ...
AXIoE base specification is in draft.
Prescibes the

1. Packet formats,

2.Server behaviour, and

3.Client responsibilities.

The client’s error recovery behaviour is not formally unconstrained, but a
recommended procedure is detailed.

AXIoE Remote Procedure Call (RPC) specification is in draft.

- Details a method to map function calls onto AXIoE transactions. 12

Python William Kamp AUT

Java David Del Rizzo NRC

C Emanuele La Rosa Selex-ES

Where we are at ...

Client implementations written in

Python William Kamp AUT

Java David Del Rizzo NRC

C (for ARM) Robert Chapman III NRC

VHDL William Kamp AUT

Server implementations written in

13

OSI Model
AMC / FPGA

AXIoE-transactions

UDP + AXIoE-protocol

IP

Ethernet

14

Feature Creep

IGN bit - disables the packet sequence number check. Reverts error recovery to UDP.

Useful for implementing MSI interrupts, doing other bad things, …

COND bit - conditionally execute a transaction based on the success of the previous.

If an error occured, don’t try with this transaction either!

15

Questions?

By the way, did you get my UDP joke?

16

	AXIoE
	MID Central Beam Former
	FPGA Application Monitor and Control (AMC)
	Design Goals
	Traditional Transport Protocol Options
	Introducing AXIoE
	Introducing AXIoE
	Packet Format 	(UDP Payload)
	Server - Designed to be cheap.
	Server Logic
	AXIoE Protocol
	Where we are at ...
	Where we are at ...
	OSI Model
	Feature Creep
	Questions?

