

Compression of radio astronomy data flows

Tim Natusch

IRASR - AUT University

Motivation

- Data transport and storage are costly, particularly at the scale of the SKA.
- Compression reduces data volumes that must be transported/stored, potential cost reductions follow.

(It comes with its own costs/overheads of course!)

The general scheme

2 types of compression

- Lossless can completely recover the original information from the compressed data
- Lossy information lost during the compression process is irretrievable

Lossy JPEG compression

Lossless, simple example

Run Length Logic (RLL)

• RLL string = 555#17

Send 6 characters instead of 20!

Data source characteristics

Need to know;

 Source Alphabet = set of all data symbols/states the source can generate

```
A={a, b, c, d, ...,z}
A = {00,01,10,11}
```

Symbol probability distribution

```
P={p(a), p(b), ..., p(z)}
P={p(00), p(01), p(10), p(11)}
```

Some information theory

•
$$I(a_i) = \log\left(\frac{1}{P(a_i)}\right) = -\log(P(a_i))$$

If base of log = 2 then unit = the bit

$$I(a_i) = -\log_2(P(a_i))$$
 bits

Source Entropy = average no of bits per symbol

$$H(A, P) = \sum_{i=1}^{N} P(a_i)I(a_i) = -\sum_{i=1}^{N} P(a_i)\log_2(P(a_i))$$

Entropy in 1 bit case

• $A = \{0, 1\}, P = \{p(0), p(1)\}, p(0)+p(1)=1$

- Entropy is maximised when symbol emission is equiprobable!
- Entropy reduces as the distribution moves from the equiprobable state!

Shannon lossless source coding theorem

$$H(A,P) \le L \le H(A,P) + \frac{1}{N}$$

L = minimum possible length of (losslessly)
 compressed data string

• For $N \to \infty$ then

$$L = H(A, P)$$

Died 2001 aged 85 years

Radio Astronomy data sources

 Typically have a gaussian probability distribution - non equiprobable distribution of states!

• 8 bit example (real)

Another file

Results from simulations of 8 bit gaussian distributed data

Theory vs practice (8 bit case)

Generalisation to N bit digitisation

Proviso's / assumptions

- Gaussian distribution
- Memoryless source; probability of observing symbol a_i is independent of any previously emitted symbols
- Non memoryless state requires a different definition of entropy and offers yet more scope for compression

$$H(A, P) = \sum_{i=1}^{N} P(a_i) \sum_{j=1}^{N} P(a_j | a_i) log_2(P(a_j | a_i))$$